Pattern Recognition and Machine Learning, Hardback

Pattern Recognition and Machine Learning Hardback

Part of the Information Science and Statistics series


This is the first textbook on pattern recognition to present the Bayesian viewpoint.

The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible.

It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning.

No previous knowledge of pattern recognition or machine learning concepts is assumed.

Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.


  • Format: Hardback
  • Pages: 758 pages, biography
  • Publisher: Springer-Verlag New York Inc.
  • Publication Date:
  • Category: Computer vision
  • ISBN: 9780387310732



Free Home Delivery

on all orders

Pick up orders

from local bookshops

Also in the Information Science and Statistics series   |  View all