Please note: In order to keep Hive up to date and provide users with the best features, we are no longer able to fully support Internet Explorer. The site is still available to you, however some sections of the site may appear broken. We would encourage you to move to a more modern browser like Firefox, Edge or Chrome in order to experience the site fully.

Discrete-Time Recurrent Neural Control : Analysis and Applications, PDF eBook

Discrete-Time Recurrent Neural Control : Analysis and Applications PDF

Part of the Automation and Control Engineering series


Please note: eBooks can only be purchased with a UK issued credit card and all our eBooks (ePub and PDF) are DRM protected.


The book presents recent advances in the theory of neural control for discrete-time nonlinear systems with multiple inputs and multiple outputs.

The simulation results that appear in each chapter include rigorous mathematical analyses, based on the Lyapunov approach, to establish its properties.

The book contains two sections: the first focuses on the analyses of control techniques; the second is dedicated to illustrating results of real-time applications.

It also provides solutions for the output trajectory tracking problem of unknown nonlinear systems based on sliding modes and inverse optimal control scheme. "This book on Discrete-time Recurrent Neural Control is unique in the literature, with new knowledge and information about the new technique of recurrent neural control especially for discrete-time systems. The book is well organized and clearly presented. It will be welcome by a wide range of researchers in science and engineering, especially graduate students and junior researchers who want to learn the new notion of recurrent neural control.

I believe it will have a good market. It is an excellent book after all."— Guanrong Chen, City University of Hong Kong "This book includes very relevant topics, about neural control.

In these days, Artificial Neural Networks have been recovering their relevance and well-stablished importance, this due to its great capacity to process big amounts of data.

Artificial Neural Networks development always is related to technological advancements; therefore, it is not a surprise that now we are being witnesses of this new era in Artificial Neural Networks, however most of the developments in this research area only focuses on applicability of the proposed schemes.

However, Edgar N. Sanchez author of this book does not lose focus and include both important applications as well as a deep theoretical analysis of Artificial Neural Networks to control discrete-time nonlinear systems.

It is important to remark that first, the considered Artificial Neural Networks are development in discrete-time this simplify its implementation in real-time; secondly, the proposed applications ranging from modelling of unknown discrete-time on linear systems to control electrical machines with an emphasize to renewable energy systems.

However, its applications are not limited to these kind of systems, due to their theoretical foundation it can be applicable to a large class of nonlinear systems.

All of these is supported by the solid research done by the author."— Alma Y.

Alanis, University of Guadalajara, Mexico"This book discusses in detail; how neural networks can be used for optimal as well as robust control design.

Design of neural network controllers for real time applications such as induction motors, boost converters, inverted pendulum and doubly fed induction generators has also been carried out which gives the book an edge over other similar titles.

This book will be an asset for the novice to the experienced ones."— Rajesh Joseph Abraham, Indian Institute of Space Science & Technology, Thiruvananthapuram, India


Other Formats