Please note: In order to keep Hive up to date and provide users with the best features, we are no longer able to fully support Internet Explorer. The site is still available to you, however some sections of the site may appear broken. We would encourage you to move to a more modern browser like Firefox, Edge or Chrome in order to experience the site fully.

Macroscopic Transport Equations for Rarefied Gas Flows : Approximation Methods in Kinetic Theory, Paperback / softback Book

Macroscopic Transport Equations for Rarefied Gas Flows : Approximation Methods in Kinetic Theory Paperback / softback

Part of the Interaction of Mechanics and Mathematics series

Paperback / softback

Description

The well known transport laws of Navier-Stokes and Fourier fail for the simulation of processes on lengthscales in the order of the mean free path of a particle that is when the Knudsen number is not small enough.

Thus, the proper simulation of flows in rarefied gases requires a more detailed description.

This book discusses classical and modern methods to derive macroscopic transport equations for rarefied gases from the Boltzmann equation, for small and moderate Knudsen numbers, i.e. at and above the Navier-Stokes-Fourier level. The main methods discussed are the classical Chapman-Enskog and Grad approaches, as well as the new order of magnitude method, which avoids the short-comings of the classical methods, but retains their benefits.

The relations between the various methods are carefully examined, and the resulting equations are compared and tested for a variety of standard problems. The book develops the topic starting from the basic description of an ideal gas, over the derivation of the Boltzmann equation, towards the various methods for deriving macroscopic transport equations, and the test problems which include stability of the equations, shock waves, and Couette flow.

Information

Other Formats

Save 18%

£62.99

£51.55

Item not Available
 
Free Home Delivery

on all orders

 
Pick up orders

from local bookshops

Information