Supporting your high street Find out how »
Basket Image


Principal Component and Correspondence Analyses Using R, Paperback / softback Book

Principal Component and Correspondence Analyses Using R Paperback / softback

Part of the SpringerBriefs in Statistics series


With the right R packages, R is uniquely suited to perform Principal Component Analysis (PCA), Correspondence Analysis (CA), Multiple Correspondence Analysis (MCA), and metric multidimensional scaling (MMDS).

The analyses depicted in this book use several packages specially developed for theses analyses and include (among others): the ExPosition suite, FactoMiner , ade4, and ca.

The authors present each technique with one or several small examples that demonstrate how to enter the data, perform the standard analyses, and obtain professional quality graphics.

Through explanations of the major options for how to carry out each method, readers can tailor the content of this book to their particular goals.

Explanations include the effects of using particular packages.

ExPosition is a great choice for the methods as it was written specifically for this book.

However, options abound and are illustrated within unique scenarios.

The first chapter includes installation of the packages.

At the end of the book, a short appendix presents critical mathematical material for readers who want to go deeper into the theory.


  • Format: Paperback / softback
  • Pages: 110 pages, 10 Illustrations, color; 30 Illustrations, black and white; X, 110 p. 40 illus., 10 illus
  • Publisher: Springer International Publishing AG
  • Publication Date:
  • Category: Probability & statistics
  • ISBN: 9783319092553



Free Home Delivery

on all orders

Pick up orders

from local bookshops

Also by Herve Abdi



Also in the SpringerBriefs in Statistics series   |  View all