Please note: In order to keep Hive up to date and provide users with the best features, we are no longer able to fully support Internet Explorer. The site is still available to you, however some sections of the site may appear broken. We would encourage you to move to a more modern browser like Firefox, Edge or Chrome in order to experience the site fully.

Knowledge Discovery Process and Methods to Enhance Organizational Performance, Hardback Book

Knowledge Discovery Process and Methods to Enhance Organizational Performance Hardback

Edited by Kweku-Muata (Virginia Commonwealth University, Richmond, USA) Osei-Bryson, Corlane (University of Technology, Kingston, Jamaica) Barclay



Although the terms "data mining" and "knowledge discovery and data mining" (KDDM) are sometimes used interchangeably, data mining is actually just one step in the KDDM process.

Data mining is the process of extracting useful information from data, while KDDM is the coordinated process of understanding the business and mining the data in order to identify previously unknown patterns. Knowledge Discovery Process and Methods to Enhance Organizational Performance explains the knowledge discovery and data mining (KDDM) process in a manner that makes it easy for readers to implement.

Sharing the insights of international KDDM experts, it details powerful strategies, models, and techniques for managing the full cycle of knowledge discovery projects.

The book supplies a process-centric view of how to implement successful data mining projects through the use of the KDDM process.

It discusses the implications of data mining including security, privacy, ethical and legal considerations. Provides an introduction to KDDM, including the various models adopted in academia and industryDetails critical success factors for KDDM projects as well as the impact of poor quality data or inaccessibility to data on KDDM projectsProposes the use of hybrid approaches that couple data mining with other analytic techniques (e.g., data envelopment analysis, cluster analysis, and neural networks) to derive greater value and utilityDemonstrates the applicability of the KDDM process beyond analyticsShares experiences of implementing and applying various stages of the KDDM process in organizationsThe book includes case study examples of KDDM applications in business and government.

After reading this book, you will understand the critical success factors required to develop robust data mining objectives that are in alignment with your organization's strategic business objectives.