Please note: In order to keep Hive up to date and provide users with the best features, we are no longer able to fully support Internet Explorer. The site is still available to you, however some sections of the site may appear broken. We would encourage you to move to a more modern browser like Firefox, Edge or Chrome in order to experience the site fully.

Learning in Graphical Models, Paperback / softback Book

Learning in Graphical Models Paperback / softback

Edited by Michael I. (University of California, Berkeley) Jordan

Part of the Adaptive Computation and Machine Learning series series

Paperback / softback


Graphical models, a marriage between probability theory and graph theory, provide a natural tool for dealing with two problems that occur throughout applied mathematics and engineering-uncertainty and complexity.

In particular, they play an increasingly important role in the design and analysis of machine learning algorithms.

Fundamental to the idea of a graphical model is the notion of modularity: a complex system is built by combining simpler parts.

Probability theory serves as the glue whereby the parts are combined, ensuring that the system as a whole is consistent and providing ways to interface models to data.

Graph theory provides both an intuitively appealing interface by which humans can model highly interacting sets of variables and a data structure that lends itself naturally to the design of efficient general-purpose algorithms. This book presents an in-depth exploration of issues related to learning within the graphical model formalism.

Four chapters are tutorial chapters-Robert Cowell on Inference for Bayesian Networks, David MacKay on Monte Carlo Methods, Michael I.

Jordan et al. on Variational Methods, and David Heckerman on Learning with Bayesian Networks.

The remaining chapters cover a wide range of topics of current research interest.


Save 1%



Item not Available
Free Home Delivery

on all orders

Pick up orders

from local bookshops


Also in the Adaptive Computation and Machine Learning series series  |  View all