Systems of Transversal Sections Near Critical Energy Levels of Hamiltonian Systems in $\mathbb {R}^4$, Paperback Book

Systems of Transversal Sections Near Critical Energy Levels of Hamiltonian Systems in $\mathbb {R}^4$ Paperback

Part of the Memoirs of the American Mathematical Society series

Description

In this article the authors study Hamiltonian flows associated to smooth functions $H:\mathbb R^4 \to \mathbb R$ restricted to energy levels close to critical levels.

They assume the existence of a saddle-center equilibrium point $p_c$ in the zero energy level $H^{-1}(0)$.

The Hamiltonian function near $p_c$ is assumed to satisfy Moser's normal form and $p_c$ is assumed to lie in a strictly convex singular subset $S_0$ of $H^{-1}(0)$.

Then for all $E \gt 0$ small, the energy level $H^{-1}(E)$ contains a subset $S_E$ near $S_0$, diffeomorphic to the closed $3$-ball, which admits a system of transversal sections $\mathcal F_E$, called a $2-3$ foliation. $\mathcal F_E$ is a singular foliation of $S_E$ and contains two periodic orbits $P_2,E\subset \partial S_E$ and $P_3,E\subset S_E\setminus \partial S_E$ as binding orbits. $P_2,E$ is the Lyapunoff orbit lying in the center manifold of $p_c$, has Conley-Zehnder index $2$ and spans two rigid planes in $\partial S_E$. $P_3,E$ has Conley-Zehnder index $3$ and spans a one parameter family of planes in $S_E \setminus \partial S_E$.

A rigid cylinder connecting $P_3,E$ to $P_2,E$ completes $\mathcal F_E$.

All regular leaves are transverse to the Hamiltonian vector field.

The existence of a homoclinic orbit to $P_2,E$ in $S_E\setminus \partial S_E$ follows from this foliation.

Information

  • Format: Paperback
  • Pages: 105 pages
  • Publisher: American Mathematical Society
  • Publication Date:
  • Category: Mathematical physics
  • ISBN: 9781470428013

£74.95

£74.45

 
Free Home Delivery

on all orders

 
Pick up orders

from local bookshops

Also in the Memoirs of the American Mathematical Society series   |  View all