Robust Subspace Estimation Using Low-Rank Optimization : Theory and Applications, Hardback Book

Robust Subspace Estimation Using Low-Rank Optimization : Theory and Applications Hardback

Part of the The International Series in Video Computing series

Description

Various fundamental applications in computer vision and machine learning require finding the basis of a certain subspace.

Examples of such applications include face detection, motion estimation, and activity recognition.

An increasing interest has been recently placed on this area as a result of significant advances in the mathematics of matrix rank optimization.

Interestingly, robust subspace estimation can be posed as a low-rank optimization problem, which can be solved efficiently using techniques such as the method of Augmented Lagrange Multiplier.

In this book, the authors discuss fundamental formulations and extensions for low-rank optimization-based subspace estimation and representation.

By minimizing the rank of the matrix containing observations drawn from images, the authors demonstrate how to solve four fundamental computer vision problems, including video denosing, background subtraction, motion estimation, and activity recognition.

Information

  • Format: Hardback
  • Pages: 114 pages, 10 Tables, black and white; 39 Illustrations, color; 2 Illustrations, black and white; VI
  • Publisher: Springer International Publishing AG
  • Publication Date:
  • Category: Computer vision
  • ISBN: 9783319041834

Other Formats

£84.99

£68.79

 
Free Home Delivery

on all orders

 
Pick up orders

from local bookshops

Also in the The International Series in Video Computing series   |  View all