Please note: In order to keep Hive up to date and provide users with the best features, we are no longer able to fully support Internet Explorer. The site is still available to you, however some sections of the site may appear broken. We would encourage you to move to a more modern browser like Firefox, Edge or Chrome in order to experience the site fully.

Causation, Prediction, and Search, PDF eBook

Causation, Prediction, and Search PDF

Part of the Adaptive Computation and Machine Learning series series

PDF

Please note: eBooks can only be purchased with a UK issued credit card and all our eBooks (ePub and PDF) are DRM protected.

Description

The authors address the assumptions and methods that allow us to turn observations into causal knowledge, and use even incomplete causal knowledge in planning and prediction to influence and control our environment.

What assumptions and methods allow us to turn observations into causal knowledge, and how can even incomplete causal knowledge be used in planning and prediction to influence and control our environment? In this book Peter Spirtes, Clark Glymour, and Richard Scheines address these questions using the formalism of Bayes networks, with results that have been applied in diverse areas of research in the social, behavioral, and physical sciences.

The authors show that although experimental and observational study designs may not always permit the same inferences, they are subject to uniform principles. They axiomatize the connection between causal structure and probabilistic independence, explore several varieties of causal indistinguishability, formulate a theory of manipulation, and develop asymptotically reliable procedures for searching over equivalence classes of causal models, including models of categorical data and structural equation models with and without latent variables.

The authors show that the relationship between causality and probability can also help to clarify such diverse topics in statistics as the comparative power of experimentation versus observation, Simpson's paradox, errors in regression models, retrospective versus prospective sampling, and variable selection.

The second edition contains a new introduction and an extensive survey of advances and applications that have appeared since the first edition was published in 1993.

Information

Other Formats

Also by Peter Spirtes

Also in the Adaptive Computation and Machine Learning series series   |  View all