Supporting your high street Find out how »
Basket Image


An Introduction to the Kahler-Ricci Flow, Paperback / softback Book

An Introduction to the Kahler-Ricci Flow Paperback / softback

Edited by Sebastien Boucksom, Philippe Eyssidieux, Vincent Guedj

Part of the Lecture Notes in Mathematics series


This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the Kahler-Ricci flow and its current state-of-the-art.

While several excellent books on Kahler-Einstein geometry are available, there have been no such works on the Kahler-Ricci flow.

The book will serve as a valuable resource for graduate students and researchers in complex differential geometry, complex algebraic geometry and Riemannian geometry, and will hopefully foster further developments in this fascinating area of research. The Ricci flow was first introduced by R. Hamilton in the early 1980s, and is central in G. Perelman's celebrated proof of the Poincare conjecture.

When specialized for Kahler manifolds, it becomes the Kahler-Ricci flow, and reduces to a scalar PDE (parabolic complex Monge-Ampere equation). As a spin-off of his breakthrough, G. Perelman proved the convergence of the Kahler-Ricci flow on Kahler-Einstein manifolds of positive scalar curvature (Fano manifolds).

Shortly after, G. Tian and J. Song discovered a complex analogue of Perelman's ideas: the Kahler-Ricci flow is a metric embodiment of the Minimal Model Program of the underlying manifold, and flips and divisorial contractions assume the role of Perelman's surgeries.


  • Format: Paperback / softback
  • Pages: 333 pages, 10 Illustrations, black and white; VIII, 333 p. 10 illus.
  • Publisher: Springer International Publishing AG
  • Publication Date:
  • Category: Complex analysis, complex variables
  • ISBN: 9783319008189



Free Home Delivery

on all orders

Pick up orders

from local bookshops

Also in the Lecture Notes in Mathematics series   |  View all