Supporting your high street Find out how »
Basket Image


Approximation By Complex Bernstein And Convolution Type Operators, Hardback Book

Approximation By Complex Bernstein And Convolution Type Operators Hardback

Part of the Series on Concrete & Applicable Mathematics series


The monograph, as its first main goal, aims to study the overconvergence phenomenon of important classes of Bernstein-type operators of one or several complex variables, that is, to extend their quantitative convergence properties to larger sets in the complex plane rather than the real intervals.

The operators studied are of the following types: Bernstein, Bernstein-Faber, Bernstein-Butzer, q-Bernstein, Bernstein-Stancu, Bernstein-Kantorovich, Favard-Szasz-Mirakjan, Baskakov and Balazs-Szabados.The second main objective is to provide a study of the approximation and geometric properties of several types of complex convolutions: the de la Vallee Poussin, Fejer, Riesz-Zygmund, Jackson, Rogosinski, Picard, Poisson-Cauchy, Gauss-Weierstrass, q-Picard, q-Gauss-Weierstrass, Post-Widder, rotation-invariant, Sikkema and nonlinear.

Several applications to partial differential equations (PDEs) are also presented.Many of the open problems encountered in the studies are proposed at the end of each chapter.

For further research, the monograph suggests and advocates similar studies for other complex Bernstein-type operators, and for other linear and nonlinear convolutions.


  • Format: Hardback
  • Pages: 352 pages
  • Publisher: World Scientific Publishing Co Pte Ltd
  • Publication Date:
  • Category: Complex analysis, complex variables
  • ISBN: 9789814282420



Free Home Delivery

on all orders

Pick up orders

from local bookshops

Also in the Series on Concrete & Applicable Mathematics series   |  View all