Markov Random Field Modeling in Image Analysis, Hardback Book

Markov Random Field Modeling in Image Analysis Hardback

Part of the Advances in Computer Vision and Pattern Recognition series


Markov random field (MRF) theory provides a basis for modeling contextual constraints in visual processing and interpretation.

It enables us to develop optimal vision algorithms systematically when used with optimization principles.

This book presents a comprehensive study on the use of MRFs for solving computer vision problems.

Various vision models are presented in a unified framework, including image restoration and reconstruction, edge and region segmentation, texture, stereo and motion, object matching and recognition, and pose estimation.

This third edition includes the most recent advances and has new and expanded sections on topics such as: Bayesian Network; Discriminative Random Fields; Strong Random Fields; Spatial-Temporal Models; Learning MRF for Classification.

This book is an excellent reference for researchers working in computer vision, image processing, statistical pattern recognition and applications of MRFs.

It is also suitable as a text for advanced courses in these areas.


  • Format: Hardback
  • Pages: 362 pages, 11 Tables, black and white; 111 Illustrations, black and white; XXII, 362 p. 111 illus.
  • Publisher: Springer London Ltd
  • Publication Date:
  • Category: Probability & statistics
  • ISBN: 9781848002784

Other Formats



Free Home Delivery

on all orders

Pick up orders

from local bookshops

Also in the Advances in Computer Vision and Pattern Recognition series   |  View all