Data Mining, Rough Sets and Granular Computing, Hardback Book

Data Mining, Rough Sets and Granular Computing Hardback

Edited by Tsau Young Lin, Yiyu Yao, L. A. Zadeh

Part of the Studies in Fuzziness and Soft Computing series

Description

During the past few years, data mining has grown rapidly in visibility and importance within information processing and decision analysis.

This is par- ticularly true in the realm of e-commerce, where data mining is moving from a "nice-to-have" to a "must-have" status.

In a different though related context, a new computing methodology called granular computing is emerging as a powerful tool for the conception, analysis and design of information/intelligent systems.

In essence, data mining deals with summarization of information which is resident in large data sets, while granular computing plays a key role in the summarization process by draw- ing together points (objects) which are related through similarity, proximity or functionality.

In this perspective, granular computing has a position of centrality in data mining.

Another methodology which has high relevance to data mining and plays a central role in this volume is that of rough set theory.

Basically, rough set theory may be viewed as a branch of granular computing.

However, its applications to data mining have predated that of granular computing.

Information

  • Format: Hardback
  • Pages: 537 pages, 56 Tables, black and white; IX, 537 p.
  • Publisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Publication Date:
  • Category: Databases
  • ISBN: 9783790814613

£169.99

£146.15

 
Free Home Delivery

on all orders

 
Pick up orders

from local bookshops

Also in the Studies in Fuzziness and Soft Computing series   |  View all