Please note: In order to keep Hive up to date and provide users with the best features, we are no longer able to fully support Internet Explorer. The site is still available to you, however some sections of the site may appear broken. We would encourage you to move to a more modern browser like Firefox, Edge or Chrome in order to experience the site fully.

Banach Embedding Properties of Non-commutative L-p Spaces, Paperback / softback Book

Banach Embedding Properties of Non-commutative L-p Spaces Paperback / softback

Part of the Memoirs of the American Mathematical Society series

Paperback / softback

Description

Let $\mathcal N$ and $\mathcal M$ be von Neumann algebras.

It is proved that $L^p(\mathcal N)$ does not linearly topologically embed in $L^p(\mathcal M)$ for $\mathcal N$ infinite, $\mathcal M$ finite, $1\le p<2$.

The following considerably stronger result is obtained (which implies this, since the Schatten $p$-class $C_p$ embeds in $L^p(\mathcal N)$ for $\mathcal N$ infinite).

Theorem. Let $1\le p<2$ and let $X$ be a Banach space with a spanning set $(x_{ij})$ so that for some $C\ge 1$, (i) any row or column is $C$-equivalent to the usual $\ell^2$-basis, (ii) $(x_{i_k,j_k})$ is $C$-equivalent to the usual $\ell^p$-basis, for any $i_1\le i_2 \le\cdots$ and $j_1\le j_2\le \cdots$.

Then $X$ is not isomorphic to a subspace of $L^p(\mathcal M)$, for $\mathcal M$ finite.Complements on the Banach space structure of non-commutative $L^p$-spaces are obtained, such as the $p$-Banach-Saks property and characterizations of subspaces of $L^p(\mathcal M)$ containing $\ell^p$ isomorphically.

The spaces $L^p(\mathcal N)$ are classified up to Banach isomorphism (i.e., linear homeomorphism), for $\mathcal N$ infinite-dimensional, hyperfinite and semifinite, $1\le p<\infty$, $p\ne 2$.

It is proved that there are exactly thirteen isomorphism types; the corresponding embedding properties are determined for $p<2$ via an eight level Hasse diagram.

It is also proved for all $1\le p<\infty$ that $L^p(\mathcal N)$ is completely isomorphic to $L^p(\mathcal M)$ if $\mathcal N$ and $\mathcal M$ are the algebras associated to free groups, or if $\mathcal N$ and $\mathcal M$ are injective factors of type III$_\lambda$ and III$_{\lambda'}$ for $0<\lambda$, $\lambda'\le 1$.

Information

Other Formats

Information