Please note: In order to keep Hive up to date and provide users with the best features, we are no longer able to fully support Internet Explorer. The site is still available to you, however some sections of the site may appear broken. We would encourage you to move to a more modern browser like Firefox, Edge or Chrome in order to experience the site fully.

Spectral Theory of the Riemann Zeta-Function, Paperback / softback Book

Spectral Theory of the Riemann Zeta-Function Paperback / softback

Part of the Cambridge Tracts in Mathematics series

Paperback / softback

Description

The Riemann zeta function is one of the most studied objects in mathematics, and is of fundamental importance.

In this book, based on his own research, Professor Motohashi shows that the function is closely bound with automorphic forms and that many results from there can be woven with techniques and ideas from analytic number theory to yield new insights into, and views of, the zeta function itself.

The story starts with an elementary but unabridged treatment of the spectral resolution of the non-Euclidean Laplacian and the trace formulas.

This is achieved by the use of standard tools from analysis rather than any heavy machinery, forging a substantial aid for beginners in spectral theory as well.

These ideas are then utilized to unveil an image of the zeta-function, first perceived by the author, revealing it to be the main gem of a necklace composed of all automorphic L-functions.

In this book, readers will find a detailed account of one of the most fascinating stories in the development of number theory, namely the fusion of two main fields in mathematics that were previously studied separately.

Information

£51.99

 
Free Home Delivery

on all orders

 
Pick up orders

from local bookshops

Information

Also in the Cambridge Tracts in Mathematics series  |  View all