Please note: In order to keep Hive up to date and provide users with the best features, we are no longer able to fully support Internet Explorer. The site is still available to you, however some sections of the site may appear broken. We would encourage you to move to a more modern browser like Firefox, Edge or Chrome in order to experience the site fully.

Renormalized Self-Intersection Local Times and Wick Power Chaos Processes, Paperback / softback Book

Renormalized Self-Intersection Local Times and Wick Power Chaos Processes Paperback / softback

Part of the Memoirs of the American Mathematical Society series

Paperback / softback

Description

Sufficient conditions are obtained for the continuity of renormalized self-intersection local times for the multiple intersections of a large class of strongly symmetric Levy processes in $R^m$, $m=1,2$.

In $R^2$ these include Brownian motion and stable processes of index greater than 3/2, as well as many processes in their domains of attraction.

In $R^1$ these include stable processes of index $3/4<\beta\le 1$ and many processes in their domains of attraction.Let $(\Omega, \mathcal F(t),X(t), P^{x})$ be one of these radially symmetric Levy processes with 1-potential density $u^1(x,y)$.

Let $\mathcal G^{2n}$ denote the class of positive finite measures $\mu$ on $R^m$ for which $\int\!\!\int (u^1(x,y))^{2n}\,d\mu(x)\,d\mu(y)<\infty$.

For $\mu\in\mathcal G^{2n}$, let $\alpha_{n,\epsilon}(\mu,\lambda) \overset\text{def}\to=\int\!\!\int_{\{0\leq t_1\leq \cdots \leq t_n\leq \lambda\}} f_{\epsilon}(X(t_1)-x)\prod_{j=2}^n f_{\epsilon}(X(t_j)- X(t_{j-1}))\,dt_1\cdots\,dt_n\,d\mu(x)$ where $f_{\epsilon}$ is an approximate $\delta-$function at zero and $\lambda$ is an random exponential time, with mean one, independent of $X$, with probability measure $P_\lambda$.The renormalized self-intersection local time of $X$ with respect to the measure $\mu$ is defined as $\gamma_{n}(\mu)=\lim_{\epsilon\to 0}\,\sum_{k=0}^{n-1}(-1)^{k} {n-1 \choose k}(u^1_{\epsilon}(0))^{k} \alpha_{n-k,\epsilon}(\mu,\lambda)$ where $u^1_{\epsilon}(x)\overset\text{def}\to= \int f_{\epsilon}(x-y)u^1(y)\,dy$, with $u^1(x)\overset\text{def} \to= u^1(x+z,z)$ for all $z\in R^m$.

Conditions are obtained under which this limit exists in $L^2(\Omega\times R^+,P^y_\lambda)$ for all $y\in R^m$, where $P^y_\lambda\overset\text{def}\to= P^y\times P_\lambda$.

Let $\{\mu_x,x\in R^m\}$ denote the set of translates of the measure $\mu$.The main result in this paper is a sufficient condition for the continuity of $\{\gamma_{n}(\mu_x),\,x\in R^m\}$ namely that this process is continuous $P^y_\lambda$ almost surely for all $y\in R^m$, if the corresponding 2$n$-th Wick power chaos process, $\{:G^{2n}\mu_x:,\,x\in R^m\}$ is continuous almost surely.

This chaos process is obtained in the following way.A Gaussian process $G_{x,\delta}$ is defined which has covariance $u^1_\delta(x,y)$, where $\lim_{\delta\to 0}u_\delta^1(x,y)=u^1(x,y)$.

Then $:G^{2n}\mu_x:\overset\text{def}\to= \lim_{\delta\to 0}\int:G_{y,\delta}^{2n}:\,d\mu_x(y)$ where the limit is taken in $L^2$. ($:G_{y,\delta}^{2n}:$ is the 2$n$-th Wick power of $G_{y,\delta}$, that is, a normalized Hermite polynomial of degree 2$n$ in $G_{y,\delta}$).

This process has a natural metric $d(x,y)\overset\text{def}\to= \frac1 {(2n)!}\(E(:G^{2n}\mu_x:-:G^{2n}\mu_y:)^2\)^{1/2} =\(\int\!\! \int \(u^1(u,v)\)^{2n} \left(d(\mu_x(u)-\mu_y(u)) \right) \left(d(\mu_x(v)-\mu_y(v)) \right)\)^{1/2}$.

A well known metric entropy condition with respect to $d$ gives a sufficient condition for the continuity of $\{:G^{2n}\mu_x:,\,x\in R^m\}$ and hence for $\{\gamma_{n}(\mu_x),\,x\in R^m\}$.

Information

Other Formats

Information