Please note: In order to keep Hive up to date and provide users with the best features, we are no longer able to fully support Internet Explorer. The site is still available to you, however some sections of the site may appear broken. We would encourage you to move to a more modern browser like Firefox, Edge or Chrome in order to experience the site fully.

Advances in Electronic Materials for Clean Energy Conversion and Storage Applications, Paperback / softback Book

Paperback / softback

Description

Advances in Electronic Materials for Clean Energy Conversion and Storage Applications reviews green synthesis and fabrication techniques of various electronic materials and their derivatives for applications in photovoltaics.

The book investigates recent advances, progress and issues of photovoltaic-based research, including organic, hybrid, dye-sensitized, polymer, and quantum dot-based solar cells.

There is a focus on applications for clean energy and storage in the book.

Clean energy is defined as energy derived from renewable resources or zero-emission sources and natural processes that are regenerative and sustainable resources such as biomass, geothermal energy, hydropower, solar and wind energy. Materials discussed include nanomaterials, nanocomposites, polymers, and polymer-composites.

Advances in clean energy conversion and energy storage devices are also reviewed thoroughly based on recent research and developments such as supercapacitors, batteries etc.

Reliable methods to characterize and analyze these materials systems and devices are emphasized throughout the book.

Important information on synthesis and analytical chemistry of these important systems are reviewed, but also material science methods to investigate optical properties of carbon-nanomaterials, metal oxide nanomaterials and their nanocomposites.

Information

Save 0%

£230.00

£229.45

 
Free Home Delivery

on all orders

 
Pick up orders

from local bookshops

Information

Also in the Woodhead Publishing Series in Electronic and Optical Materials series  |  View all