Please note: In order to keep Hive up to date and provide users with the best features, we are no longer able to fully support Internet Explorer. The site is still available to you, however some sections of the site may appear broken. We would encourage you to move to a more modern browser like Firefox, Edge or Chrome in order to experience the site fully.

Central Nervous System Tissue Engineering : Current Considerations and Strategies, PDF eBook

Central Nervous System Tissue Engineering : Current Considerations and Strategies PDF

Part of the Synthesis Lectures on Tissue Engineering series

PDF

Please note: eBooks can only be purchased with a UK issued credit card and all our eBooks (ePub and PDF) are DRM protected.

Description

Combating neural degeneration from injury or disease is extremely difficult in the brain and spinal cord, i.e. central nervous system (CNS). Unlike the peripheral nerves, CNS neurons are bombarded by physical and chemical restrictions that prevent proper healing and restoration of function.

The CNS is vital to bodily function, and loss of any part of it can severely and permanently alter a person's quality of life.

Tissue engineering could offer much needed solutions to regenerate or replace damaged CNS tissue.

This review will discuss current CNS tissue engineering approaches integrating scaffolds, cells and stimulation techniques.

Hydrogels are commonly used CNS tissue engineering scaffolds to stimulate and enhance regeneration, but fiber meshes and other porous structures show specific utility depending on application.

CNS relevant cell sources have focused on implantation of exogenous cells or stimulation of endogenous populations.

Somatic cells of the CNS are rarely utilized for tissue engineering; however, glial cells of the peripheral nervous system (PNS) may be used to myelinate and protect spinal cord damage.

Pluripotent and multipotent stem cells offer alternative cell sources due to continuing advancements in identification and differentiation of these cells.

Finally, physical, chemical, and electrical guidance cues are extremely important to neural cells, serving important roles in development and adulthood.

These guidance cues are being integrated into tissue engineering approaches.

Of particular interest is the inclusion of cues to guide stem cells to differentiate into CNS cell types, as well to guide neuron targeting.

This review should provide the reader with a broad understanding of CNS tissue engineering challenges and tactics, with the goal of fostering the future development of biologically inspired designs. Table of Contents: Introduction / Anatomy of the CNS and Progression of Neurological Damage / Biomaterials for Scaffold Preparation / Cell Sources for CNS TE / Stimulation and Guidance / Concluding Remarks

Information

Other Formats

Information