Supporting your high street Find out how »
Basket Image


Model-Based Clustering and Classification for Data Science : With Applications in R, Hardback Book


Cluster analysis finds groups in data automatically.

Most methods have been heuristic and leave open such central questions as: how many clusters are there?

Which method should I use? How should I handle outliers? Classification assigns new observations to groups given previously classified observations, and also has open questions about parameter tuning, robustness and uncertainty assessment.

This book frames cluster analysis and classification in terms of statistical models, thus yielding principled estimation, testing and prediction methods, and sound answers to the central questions.

It builds the basic ideas in an accessible but rigorous way, with extensive data examples and R code; describes modern approaches to high-dimensional data and networks; and explains such recent advances as Bayesian regularization, non-Gaussian model-based clustering, cluster merging, variable selection, semi-supervised and robust classification, clustering of functional data, text and images, and co-clustering.

Written for advanced undergraduates in data science, as well as researchers and practitioners, it assumes basic knowledge of multivariate calculus, linear algebra, probability and statistics.


  • Format: Hardback
  • Pages: 446 pages, Worked examples or Exercises; 48 Tables, black and white; 72 Halftones, color; 9 Halftone
  • Publisher: Cambridge University Press
  • Publication Date:
  • Category: Social research & statistics
  • ISBN: 9781108494205



Free Home Delivery

on all orders

Pick up orders

from local bookshops

Also in the Cambridge Series in Statistical and Probabilistic Mathematics series   |  View all