Please note: In order to keep Hive up to date and provide users with the best features, we are no longer able to fully support Internet Explorer. The site is still available to you, however some sections of the site may appear broken. We would encourage you to move to a more modern browser like Firefox, Edge or Chrome in order to experience the site fully.

Electromagnetic Absorption in the Copper Oxide Superconductors, Hardback Book

Electromagnetic Absorption in the Copper Oxide Superconductors Hardback

Part of the Selected Topics in Superconductivity series

Hardback

Description

In 1987 a major breakthrough occurred in materials science.

A new family of materials was discovered that became superconducting above the temperature at which nitrogen gas liquifies, namely, 77 K or –196°C.

Within months of the discovery, a wide variety of experimental techniques were brought to bear in order to measure the properties of these materials and to gain an understanding of why they superconduct at such high temperatures.

Among the techniques used were electromagnetic absorption in both the normal and the superconducting states.

The measurements enabled the determination of a wide variety of properties, and in some instances led to the observation of new effects not seen by other measu- ments, such as the existence of weak-link microwave absorption at low dc magnetic fields.

The number of different properties and the degree of detail that can be obtained from magnetic field- and temperature-dependent studies of electromagnetic abso- tion are not widely appreciated.

For example, these measurements can provide information on the band gap, critical fields, the H–T irreversibility line, the amount of trapped flux, and even information about the symmetry of the wave function of the Cooper pairs.

It is possible to use low dc magnetic field-induced absorption of microwaves with derivative detection to verify the presence of superconductivity in a matter of minutes, and the measurements are often more straightforward than others.

For example, they do not require the physical contact with the sample that is necessary when using four-probe resistivity to detect superconductivity.

Information

Other Formats

Save 13%

£119.99

£104.05

Item not Available
 
Free Home Delivery

on all orders

 
Pick up orders

from local bookshops

Information

Also in the Selected Topics in Superconductivity series  |  View all