Supporting your high street Find out how »
Basket Image


Reliable Reasoning : Induction and Statistical Learning Theory, Paperback / softback Book

Reliable Reasoning : Induction and Statistical Learning Theory Paperback / softback

Part of the Jean Nicod Lectures series


The implications for philosophy and cognitive science of developments in statistical learning theory. In Reliable Reasoning, Gilbert Harman and Sanjeev Kulkarni-a philosopher and an engineer-argue that philosophy and cognitive science can benefit from statistical learning theory (SLT), the theory that lies behind recent advances in machine learning.

The philosophical problem of induction, for example, is in part about the reliability of inductive reasoning, where the reliability of a method is measured by its statistically expected percentage of errors-a central topic in SLT. After discussing philosophical attempts to evade the problem of induction, Harman and Kulkarni provide an admirably clear account of the basic framework of SLT and its implications for inductive reasoning.

They explain the Vapnik-Chervonenkis (VC) dimension of a set of hypotheses and distinguish two kinds of inductive reasoning.

The authors discuss various topics in machine learning, including nearest-neighbor methods, neural networks, and support vector machines.

Finally, they describe transductive reasoning and suggest possible new models of human reasoning suggested by developments in SLT.


  • Format: Paperback / softback
  • Pages: 120 pages, 19 illus.; 19 Illustrations, unspecified
  • Publisher: MIT Press Ltd
  • Publication Date:
  • Category: Philosophy of mind
  • ISBN: 9780262517348



Free Home Delivery

on all orders

Pick up orders

from local bookshops

Also in the Jean Nicod Lectures series   |  View all