Please note: In order to keep Hive up to date and provide users with the best features, we are no longer able to fully support Internet Explorer. The site is still available to you, however some sections of the site may appear broken. We would encourage you to move to a more modern browser like Firefox, Edge or Chrome in order to experience the site fully.

Enhanced Optical and Electric Manipulation of a Quantum Gas of KRb Molecules, Paperback / softback Book

Enhanced Optical and Electric Manipulation of a Quantum Gas of KRb Molecules Paperback / softback

Part of the Springer Theses series

Paperback / softback

Description

This thesis describes significant advances in experimental capabilities using ultracold polar molecules.

While ultracold polar molecules are an idyllic platform for quantum chemistry and quantum many-body physics, molecular samples prior to this work failed to be quantum degenerate, were plagued by chemical reactions, and lacked any evidence of many-body physics.

These limitations were overcome by loading molecules into an optical lattice to control and eliminate collisions and hence chemical reactions.

This led to observations of many-body spin dynamics using rotational states as a pseudo-spin, and the realization of quantum magnetism with long-range interactions and strong many-body correlations. Further, a 'quantum synthesis' technique based on atomic insulators allowed the author to increase the filling fraction of the molecules in the lattice to 30%, a substantial advance which corresponds to an entropy-per-molecule entering the quantum degenerate regime and surpasses the so-called percolations threshold where long-range spin propagation is expected. Lastly, this work describes the design, construction, testing, and implementation of a novel apparatus for controlling polar molecules.

It provides access to: high-resolution molecular detection and addressing; large, versatile static electric fields; and microwave-frequency electric fields for driving rotational transitions with arbitrary polarization.

Further, the yield of molecules in this apparatus has been demonstrated to exceed 10^5, which is a substantial improvement beyond the prior apparatus, and an excellent starting condition for direct evaporative cooling to quantum degeneracy.

Information

Other Formats

£89.99

 
Free Home Delivery

on all orders

 
Pick up orders

from local bookshops

Information