Please note: In order to keep Hive up to date and provide users with the best features, we are no longer able to fully support Internet Explorer. The site is still available to you, however some sections of the site may appear broken. We would encourage you to move to a more modern browser like Firefox, Edge or Chrome in order to experience the site fully.

Algebraic Semantics of Imperative Programs, PDF eBook

Algebraic Semantics of Imperative Programs PDF

Part of the Foundations of Computing series

PDF

Please note: eBooks can only be purchased with a UK issued credit card and all our eBooks (ePub and PDF) are DRM protected.

Description

Algebraic Semantics of Imperative Programs presents a self-contained and novel "executable" introduction to formal reasoning about imperative programs. The authors' primary goal is to improve programming ability by improving intuition about what programs mean and how they run. The semantics of imperative programs is specified in a formal, implemented notation, the language OBJ; this makes the semantics highly rigorous yet simple, and provides support for the mechanical verification of program properties. OBJ was designed for algebraic semantics; its declarations introduce symbols for sorts and functions, its statements are equations, and its computations are equational proofs. Thus, an OBJ "program" is an equational theory, and every OBJ computation proves some theorem about such a theory. This means that an OBJ program used for defining the semantics of a program already has a precise mathematical meaning. Moreover, standard techniques for mechanizing equational reasoning can be used for verifying axioms that describe the effect of imperative programs on abstract machines. These axioms can then be used in mechanical proofs of properties of programs. Intended for advanced undergraduates or beginning graduate students, Algebraic Semantics of Imperative Programs contains many examples and exercises in program verification, all of which can be done in OBJ.

Information

Information