Please note: In order to keep Hive up to date and provide users with the best features, we are no longer able to fully support Internet Explorer. The site is still available to you, however some sections of the site may appear broken. We would encourage you to move to a more modern browser like Firefox, Edge or Chrome in order to experience the site fully.

Radiating Nonuniform Transmission-Line Systems and the Partial Element Equivalent Circuit Method, PDF eBook

Radiating Nonuniform Transmission-Line Systems and the Partial Element Equivalent Circuit Method PDF

PDF

Please note: eBooks can only be purchased with a UK issued credit card and all our eBooks (ePub and PDF) are DRM protected.

Description

High frequencies of densely packed modern electronic equipment turn even the smallest piece of wire into a transmission line with signal retardation, dispersion, attenuation, and distortion. In electromagnetic environments with high-power microwave or ultra-wideband sources, transmission lines pick up noise currents generated by external electromagnetic fields. These are superimposed on essential signals, the lines acting not only as receiving antennas but radiating parts of the signal energy into the environment.

This book is outstanding in its originality. While many textbooks rephrase that which has been written before, this book features:
* an accessible introduction to the fundamentals of electromagnetics;
* an explanation of the newest developments in transmission line theory, featuring the transmission line super theory developed by the authors;
* a unique exposition of the increasingly popular PEEC (partial element equivalent circuit) method, including recent research results.

Both the Transmission Line Theory and the PEEC method are well suited to combine linear structures with circuit networks.

For engineers, researchers, and graduate students, this text broadens insight into the basics of electrical engineering. It provides a deeper understanding of Maxwellian-circuit-like representations of multi-conductor transmission lines, justifies future research in this field.

Information

Information