Please note: In order to keep Hive up to date and provide users with the best features, we are no longer able to fully support Internet Explorer. The site is still available to you, however some sections of the site may appear broken. We would encourage you to move to a more modern browser like Firefox, Edge or Chrome in order to experience the site fully.

Nonclassical Light from Semiconductor Lasers and LEDs, Hardback Book

Nonclassical Light from Semiconductor Lasers and LEDs Hardback

Part of the Springer Series in Photonics series

Hardback

Description

The quantum statistical properties of light generated in a semiconductor laser and a light-emitting diode (LED) have been a ?eld of intense research for more than a decade.

This research monograph discusses recent research activities in nonclassical light generation based on semiconductor devices, performed mostly at Stanford University.

When a semiconductor material is used as the active medium to generate photons, as in semiconductor lasers and LEDs, the ?ow of carriers (electrons andholes)isconvertedintoa?owofphotons.

Providedthattheconversionis fast and e?cient, the statistical properties of the carriers (“pump noise”) can be transferred to the photons; if pump noise can be suppressed to below the shot noise value, the noise in the photon output can also be suppressed below thePoissonlimit.

Sinceelectronsandholesarefermionsandhavecharges,the statisticalpropertiesoftheseparticlescanbesigni?cantlydi?erentfromthose of photons if the structure of the light-emitting device is properly designed to provide interaction between these particles.

There has been a discrepancy between the theoretical understanding and experimental observation of noise in a macroscopic resistor until very - cently.

The dissipation that electrons experience in a resistor is expected to accompany the ?uctuation due to partition noise, leading to shot noise in the large dissipation limit as is the case with photons.

Experimental observation shows that thermal noise, expected only in a thermal-equilibrium situation (zero-bias condition), is the only source of noise featured by a resistor, - dependent of the current.

Information

Other Formats

Save 13%

£139.99

£120.95

Item not Available
 
Free Home Delivery

on all orders

 
Pick up orders

from local bookshops

Information