Diophantine Approximation and the Geometry of Limit Sets in Gromov Hyperbolic Metric Spaces, Paperback / softback Book

Diophantine Approximation and the Geometry of Limit Sets in Gromov Hyperbolic Metric Spaces Paperback / softback

Part of the Memoirs of the American Mathematical Society series

Description

In this paper, the authors provide a complete theory of Diophantine approximation in the limit set of a group acting on a Gromov hyperbolic metric space.

This summarizes and completes a long line of results by many authors, from Patterson's classic 1976 paper to more recent results of Hersonsky and Paulin (2002, 2004, 2007).

The authors consider concrete examples of situations which have not been considered before.

These include geometrically infinite Kleinian groups, geometrically finite Kleinian groups where the approximating point is not a fixed point of any element of the group, and groups acting on infinite-dimensional hyperbolic space.

Moreover, in addition to providing much greater generality than any prior work of which the authors are aware, the results also give new insight into the nature of the connection between Diophantine approximation and the geometry of the limit set within which it takes place.

Two results are also contained here which are purely geometric: a generalization of a theorem of Bishop and Jones (1997) to Gromov hyperbolic metric spaces, and a proof that the uniformly radial limit set of a group acting on a proper geodesic Gromov hyperbolic metric space has zero Patterson-Sullivan measure unless the group is quasiconvex-cocompact.

The latter is an application of a Diophantine theorem.

Information

  • Format: Paperback / softback
  • Pages: 137 pages
  • Publisher: American Mathematical Society
  • Publication Date:
  • Category: Number theory
  • ISBN: 9781470428860

£76.95

£75.55

 
Free Home Delivery

on all orders

 
Pick up orders

from local bookshops

Also in the Memoirs of the American Mathematical Society series   |  View all