Please note: In order to keep Hive up to date and provide users with the best features, we are no longer able to fully support Internet Explorer. The site is still available to you, however some sections of the site may appear broken. We would encourage you to move to a more modern browser like Firefox, Edge or Chrome in order to experience the site fully.

Data-Parallel Programming on MIMD Computers, PDF eBook

Data-Parallel Programming on MIMD Computers PDF

Part of the Scientific and Engineering Computation series

PDF

Please note: eBooks can only be purchased with a UK issued credit card and all our eBooks (ePub and PDF) are DRM protected.

Description

Data-Parallel Programming demonstrates that architecture-independent parallel programming is possible by describing in detail how programs written in a high-level SIMD programming language may be compiled and efficiently executed-on both shared-memory multiprocessors and distributed-memory multicomputers.

MIMD computers are notoriously difficult to program. Data-Parallel Programming demonstrates that architecture-independent parallel programming is possible by describing in detail how programs written in a high-level SIMD programming language may be compiled and efficiently executed-on both shared-memory multiprocessors and distributed-memory multicomputers. The authors provide enough data so that the reader can decide the feasibility of architecture-independent programming in a data-parallel language. For each benchmark program they give the source code listing, absolute execution time on both a multiprocessor and a multicomputer, and a speedup relative to a sequential program. And they often present multiple solutions to the same problem, to better illustrate the strengths and weaknesses of these compilers. The language presented is Dataparallel C, a variant of the original C* language developed by Thinking Machines Corporation for its Connection Machine processor array. Separate chapters describe the compilation of Dataparallel C programs for execution on the Sequent multiprocessor and the Intel and nCUBE hypercubes, respectively. The authors document the performance of these compilers on a variety of benchmark programs and present several case studies.

Contents
Introduction * Dataparallel C Programming Language Description * Design of a Multicomputer Dataparallel C Compiler * Design of a Multiprocessor Dataparallel C Compiler * Writing Efficient Programs * Benchmarking the Compilers * Case Studies * Conclusions

Information

Information

Also in the Scientific and Engineering Computation series  |  View all