Eigenfunctions of the Laplacian on a Riemannian Manifold, Paperback / softback Book

Eigenfunctions of the Laplacian on a Riemannian Manifold Paperback / softback

Part of the CBMS Regional Conference Series in Mathematics series


Eigenfunctions of the Laplacian of a Riemannian manifold can be described in terms of vibrating membranes as well as quantum energy eigenstates.

This book is an introduction to both the local and global analysis of eigenfunctions.

The local analysis of eigenfunctions pertains to the behavior of the eigenfunctions on wavelength scale balls.

After re-scaling to a unit ball, the eigenfunctions resemble almost-harmonic functions.

Global analysis refers to the use of wave equation methods to relate properties of eigenfunctions to properties of the geodesic flow. The emphasis is on the global methods and the use of Fourier integral operator methods to analyze norms and nodal sets of eigenfunctions.

A somewhat unusual topic is the analytic continuation of eigenfunctions to Grauert tubes in the real analytic case, and the study of nodal sets in the complex domain. The book, which grew out of lectures given by the author at a CBMS conference in 2011, provides complete proofs of some model results, but more often it gives informal and intuitive explanations of proofs of fairly recent results.

It conveys inter-related themes and results and offers an up-to-date comprehensive treatment of this important active area of research.


  • Format: Paperback / softback
  • Pages: 394 pages
  • Publisher: American Mathematical Society
  • Publication Date:
  • Category: Calculus & mathematical analysis
  • ISBN: 9781470410377



Free Home Delivery

on all orders

Pick up orders

from local bookshops

Also in the CBMS Regional Conference Series in Mathematics series   |  View all