Please note: In order to keep Hive up to date and provide users with the best features, we are no longer able to fully support Internet Explorer. The site is still available to you, however some sections of the site may appear broken. We would encourage you to move to a more modern browser like Firefox, Edge or Chrome in order to experience the site fully.

Characterisation of a Nickel-Iron Battolyser : An Integrated Battery and Electrolyser, Paperback / softback Book

Characterisation of a Nickel-Iron Battolyser : An Integrated Battery and Electrolyser Paperback / softback

Paperback / softback

Description

Low-carbon electricity systems require energy storage on all time scales to accommodate the variations in solar and wind power.

The research described in this book builds on recent research into nickel-iron battery-electrolysers or "battolysers" as both short-term and long-term energy storage.

For short-term cycling as a battery, the internal resistances and time constants have been measured, including the component values of resistors and capacitors in equivalent circuits.

The dependence of these values on state-of-charge and temperature have also been measured.

The results confirm that a nickel-iron cell can hold 25% more than its nominal charge.

However, this increased capacity disappears at temperatures of 60(deg)C and may be dissipated quickly by self-discharge.

When operating as an electrolyser for long-term energy storage, the experiments have established the importance of a separation gap between each electrode and the membrane for gas evolution and established the optimum size of this gap as approximately 1.25 mm.

The nickel-iron cell has acceptable performance as an electrolyser for Power-to-X energy conversion but its large internal resistance limits voltage efficiency to 75% at a 5 hour charge and discharge rate, with or without a bubble separation membrane.

Information

Save 6%

£28.97

£27.15

 
Free Home Delivery

on all orders

 
Pick up orders

from local bookshops

Information